skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sauré, Denis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Traditionally, in the bilevel optimization framework, a leader chooses her actions by solving an upper-level problem, assuming that a follower chooses an optimal reaction by solving a lower-level problem. However, in many settings, the lower-level problems might be nontrivial, thus requiring the use of tailored algorithms for their solution. More importantly, in practice, such problems might be inexactly solved by heuristics and approximation algorithms. Motivated by this consideration, we study a broad class of bilevel optimization problems where the follower might not optimally react to the leader’s actions. In particular, we present a modeling framework in which the leader considers that the follower might use one of a number of known algorithms to solve the lower-level problem, either approximately or heuristically. Thus, the leader can hedge against the follower’s use of suboptimal solutions. We provide algorithmic implementations of the framework for a class of nonlinear bilevel knapsack problem (BKP), and we illustrate the potential impact of incorporating this realistic feature through numerical experiments in the context of defender-attacker problems. 
    more » « less